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ABSTRACT
Despite the security community’s best effort, the number
of serious vulnerabilities discovered in software is increasing
rapidly. In theory, security audits should find and remove
the vulnerabilities before the code ever gets deployed. How-
ever, due to the enormous amount of code being produced,
as well as a the lack of manpower and expertise, not all code
is sufficiently audited. Thus, many vulnerabilities slip into
production systems. A best-practice approach is to use a
code metric analysis tool, such as Flawfinder, to flag poten-
tially dangerous code so that it can receive special attention.
However, because these tools have a very high false-positive
rate, the manual effort needed to find vulnerabilities remains
overwhelming.

In this paper, we present a new method of finding poten-
tially dangerous code in code repositories with a significantly
lower false-positive rate than comparable systems. We com-
bine code-metric analysis with metadata gathered from code
repositories to help code review teams prioritize their work.
The paper makes three contributions. First, we conducted
the first large-scale mapping of CVEs to GitHub commits
in order to create a vulnerable commit database. Second,
based on this database, we trained a SVM classifier to flag
suspicious commits. Compared to Flawfinder, our approach
reduces the amount of false alarms by over 99 % at the same
level of recall. Finally, we present a thorough quantitative
and qualitative analysis of our approach and discuss lessons
learned from the results. We will share the database as
a benchmark for future research and will also provide our
analysis tool as a web service.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; K.6.5 [Management of Computing and Infor-
mation Systems]: Security and Protection
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1. INTRODUCTION
Despite the best effort of the security community, the

number of serious vulnerabilities discovered in deployed soft-
ware is on the rise. The Common Vulnerabilities and Expo-
sures (CVE) database operated by MITRE tracks the most
serious vulnerabilities. In 2000, around 1,000 CVEs were
registered. By 2010, there were about 4,500. In 2014, al-
most 8,000 CVEs were registered. The trend seems to be
increasing in speed.

While it is considered a best practice to perform code
reviews before code is released, as well as to retroactively
checking old code, there is often not enough manpower to
rigorously review all the code that should be reviewed. Al-
though open-source projects have the advantage that any-
body can, in theory, look at all the source code, and although
bug-bounty programs create incentives to do so, usually only
a small team of core developers reviews the code.

In order to support code reviewers in finding vulnerabili-
ties, tools and methodologies that flag potentially dangerous
code are used to narrow down the search. For C-like lan-
guages, a wide variety of code metrics can raise warning
flags, such as a variable assigned inside an if-statement or
unreachable cases in a switch-statement. The Clang static
analyzer [1] as well as the dynamic analyzer Valgrind [3] and
others, can pinpoint further pitfalls such as invalid mem-
ory access. For the Linux kernel, the Trinity system call-
fuzzer [2] has found and continues to find many bugs. Fi-
nally, static analysis tools like Flawfinder [34] help find pos-
sible security vulnerabilities.

Most of these approaches operate on an entire software
project and deliver a (frequently very large) list of poten-
tially unsafe code. However, software grows incrementally
and it is desirable to have tools to assist in reviewing these
increments as well as tools to check entire projects. Most
open-source projects manage their source code with version
control systems (VCS) such as Git, Mercurial, CVS or Sub-
version. In such systems, code – including vulnerable code
– is inserted into the software in the form of commits to the
repository. Therefore, the natural unit upon which to check
whether new code is dangerous is the commit. However,
most existing tools cannot simply be executed on code snip-
pets contained within a commit. Thus, if a code reviewer
wants to check the security of a commit, the reviewer must



execute the analysis software on the entire project and then
check if any of the warnings relate to the commit. This can
be a considerable amount of work, especially since many
tools require source code to be annotated and dynamic tests
would have to be constructed in a way that triggers the
commit.

Static and dynamic code analysis tools focus exclusively
on the code without the context of who wrote the code and
how it was committed. However, code repositories contain
a wealth of metadata which can be highly relevant to the
code quality. For instance, it can be seen whether a com-
mitter is new to the project or if they are one of the core
contributors. It is possible to see the time of day or night
at which code was submitted and to monitor the activity of
development in certain regions of code. Moreover, most ex-
isting code-metric-based tools have very high false-positive
rates, creating a (sometimes impossibly) high workload and
undermining trust in the effectiveness of the tools. For in-
stance, Flawfinder tool created 5,460 false positives warnings
for only 53 true positives on the dataset used in this paper.
It is intuitively clear that code reviewers who want to find
53 vulnerabilities in a set of 5,513 flagged commits have a
tough time ahead of them.

In this paper, we present a classifier that can identify po-
tentially vulnerable commits with a significantly lower false-
positive rate while retain high recall rates. Therefore, unlike
most existing tools for vulnerability finding, we don’t focus
solely on code metrics, but also leverage the rich metadata
contained in code repositories.

To evaluate the effectiveness of our approach, we conduct
a large-scale evaluation of 66 GitHub projects with 170,860
commits, gathering both metadata about the commits as
well as mapping CVEs to commits to create a database of
vulnerability-contributing commits (VCCs) and a benchmark
for future research.

We conducted a statistical analysis of these VCCs and
trained a Support Vector Machine (SVM) to detect them
based on the combination of code metric analysis and Git-
Hub metadata. For our evaluation we trained our classifier
only on data up to December 31, 2010 and ran our tests
against CVEs discovered in 2011–2014.

In this dataset, our approach, called VCCFinder, pro-
duces only 36 false positives compared to Flawfinder’s 5,460
at the same level of recall. This is a reduction of over 99 %
and significantly eases the workload of code reviewers.

1.1 Our Contributions
In summary, we make the following contributions in this

paper:

• We present VCCFinder, a code analysis tool that flags
suspicious commits by using a SVM-based detection
model. Our method outperforms Flawfinder by a great
margin, reducing the false positives by over 99 % at the
same level of recall. Our methodology is suited to work
on code snippets, enabling us to analyse code at the
commit level and making a lightweight analysis of new
code far easier than requiring a full build environment
to be set up for each test.

• We construct the first large-scale database mapping
CVEs to vulnerability-contributing commits (VCCs).
The database contains 66 GitHub projects, 170,860
commits and 640 VCCs. We conduct an extensive eval-

uation of the methodology used to create this database
to ascertain its quality as a benchmark for future re-
search.

• We present an extensive quantitative and qualitative
evaluation of VCCFinder and discuss take-aways, in-
cluding, for instance that, from a security perspective,
gotos are not generally harmful but in combination
with error-handling code they are responsible for a sig-
nificant number of VCCs.

2. RELATED WORK
The discovery of vulnerabilities in program code is a fun-

damental problem of computer security. Consequently, it
has received much attention in the past. In the following,
we give a sample of the prior work most closely related to
our approach.

Static analysis.
The set of static analysis tools can be thought of as a spec-

trum ranging from faster, lightweight approaches to slower
but more thorough techniques. With VCCFinder being a
lightweight tool, we compare ourselves to FlawFinder [34],
a prominent representative of this class of tools. Other
lightweight approaches include Rats [9], Prefast [8] as well
as Splint [10], the later requiring manual annotations.

Regarding more thorough approaches Bandhakavi et al.
[11] search for vulnerabilities in browser extensions by apply-
ing static information-flow analysis to the JavaScript code.
Dahse and Holz [15] introduced a static analyzer for PHP
that can detect sophisticated attacks against web applica-
tions. Finally, commercial tools like Coventry [5], Fortify [6],
CodeSonar [4], and IBM Security AppScan Source (formerly
Rational) [7] focus on a thorough analysis with configurable
rulesets and consequently long run times.

Symbolic execution.
Cadar et al. [12] present KLEE, a symbolic execution tool,

which requires manual annotation and modification of the
source code. Also the runtime grows exponentially with the
number of paths in the program, which limits the size of
project which can be tested with KLEE. Thus it is not fea-
sible to execute KLEE on the same scale as VCCFinder.
However, it is an interesting area of future work to execute
KLEE as a second step after VCCFinder. Klee would then
only be used on the commits flagged by VCCFinder which
hopefully would significantly reduce the effort needed to run
KLEE. We see these tools as complementary and separate
steps in the tool chain.

Dynamic analysis.
Cho et al. [14] use a combination of symbolic and con-

crete execution to build an abstract model of the analyzed
application and find vulnerabilities in several open-source
projects. Yamaguchi et al. [37] provide an analysis plat-
form offering fuzzy parsing of code that generates a graph
representing code suitable to be mined with graph-database
queries. This approach allows application-specific vulnera-
bility patterns to be expressed; however, in contrast to our
approach, it requires manual specification of these patterns
by the analyst. Holler et al. [20] used fuzzing on code frag-
ments to find vulnerabilities in the Mozilla JavaScript inter-
preter and the PHP interpreter.



Software metrics.
Several authors have proposed to employ software met-

rics to home in on regions of code more likely to contain
vulnerabilities. For example, Zimmermann et al. [38] per-
form a large-scale empirical study on Windows Vista, indi-
cating that metrics such as code churn, code complexity [see
22, 19] and organizational measures allow vulnerabilities to
be detected with high precision at low recall rates, while
code dependency measures achieve low precision at high re-
call rates. However, Graylin et al. [18] point out that many
of these metrics may be highly correlated with lines of code.
In particular, they show empirically that the relation be-
tween cyclomatic complexity and lines of code is near-linear,
meaning that no reduction in the amount of code to read is
achieved in this way.

Repository analysis.
There is a range of research work looking at software repo-

sitories in relation to software vulnerabilities. The most rel-
evant with respect to our project can be divided into two
groups: those that look at code metrics and those that look
at metadata.

Neuhaus et al. [26] use the vulnerability database of the
Mozilla project to extract which software components have
had vulnerabilities in the past and which imports and func-
tion calls were involved. They use this to predict which soft-
ware components of the Mozilla Internet suite are most likely
to contain more vulnerabilities. Unlike our approach, they
do not use any metadata in their analysis and the results
flag entire software components rather than single commits.
The results are thus more generic in the sense that they can
say only that one set of software components is more worth
checking than others.

On the other side, work conducted by Meneely et al. and
Shin et al. analyzes different code repository metadata in
relation to CVEs [25, 23, 24]. Specifically, they check how
features such as code churn, lines of code, or the number of
reviewers from a project’s repository and review system data
correlate to reported vulnerabilities. They do this manually
for the Mozilla Firefox Browser, Apache HTTP server and
an excerpt of the RHEL Linux kernel. Unlike the work above
and our work, they do not use this data to predict vulnera-
bilities; moreover, unlike our work, they do not combine the
features but look at each separately.

Sadeghi et al. [28] aim to reduce the number of rules used
by static analysis software. For this they looked at “catego-
rized software repositories” (i.e. the Google Play Store) and
evaluated how knowledge of the app’s category can reduce
the number of static analysis rules needed to still retain full
coverage. For this, they compared Java programs on Source-
Forge (without a framework) to Android apps on F-Droid
(written with an application development framework). From
the app’s category they were able to build a predictor that
helps pick a subset of static analyzer rules to apply; therefore
reducing the time the static analyzer needs. Their method
works especially well with apps using a framework, such as
Android apps. In contrast, while this work reduces the num-
ber of rules used for analysis, we prioritize the code needed
to be analysed. These approaches are complementary.

Wijayasekara et al. [35] used bug-trackers to study bugs
that afterwards have been identified as vulnerabilities. The
work does not deal with finding unknown vulnerabilities.

While this does not directly relate to our work, bug-trackers
are an interesting additional source of information.

Kim et al. [21] mined logs of a project’s SCM repository for
bug-introducing changes using fixed keywords (such as “fix”
or “bug”). They then extracted features from these commits
and trained an SVM. Our approach differs from the authors’
in three ways: first, we use as a base of our research the much
smaller and thus harder set of critical vulnerabilities mined
from the CVE database; second, we use additional features
gathered from the SCM history such as past/future different
authors; third we use a historical split to evaluate our system
opposed to a (random) ten-fold cross validation. The later
is important since it guarantees that our system was not
trained on future commits to decide if some past commit
introduced a bug. Unfortunately neither the code base nor
the data is available so a direct comparison is not possible.
We re-ran our experiments using random cross validation
and found that it increased the precision for around 15 %
with a recall between 0.4 and 0.6.

Śliwerski et al. [32] present preliminary results on a sta-
tistical analysis of the Eclipse and Mozilla projects. They
mined the Eclipse project’s bug database for fix-inducing
changes. Then, they do a statistical analysis on their data,
showing that most bugs were committed on Fridays. Our
work goes beyond these results in several ways. The sta-
tistical analysis is more extensive, is done on a much larger
dataset and is only the first step in our system. Based on
the results we train a SVM and create an adaptable system
to predict vulnerability inducing commits.

Thus, our work goes beyond the above approaches in sev-
eral ways. We combine both code metrics as well as meta-
data in our analysis and use a machine-learning approach
to extract and combine relevant features as well as to cre-
ate a classification engine to predict which commits are more
likely to be vulnerable. In contrast to the work above, we do
this for a large set of projects in an automated way instead
of hand-picking features and analyzing single projects.

Machine-learning techniques.
Machine-learning and data-mining approaches have been

proposed by several authors for finding vulnerabilities. For
example, Scandariato et al. [31] train a classifier on textual
features extracted from source code to determine vulnera-
ble software components. Moreover, several unsupervised
machine-learning approaches have been presented to assist
in the discovery of vulnerabilities. For example, Yamaguchi
et al. [36] introduce a method to expose missing checks in
C source code by combining static tainting and techniques
for anomaly detection. Similarly, Chang et al. [13] present
a data-mining approach to reveal neglected conditions and
discover implicit conditional rules and their violations.

However, in order to identify vulnerabilities, these ap-
proaches concentrate only on features extracted from source
code. In contrast, we show that additional meta informa-
tion, such as the experience of a developer, are valuable
features that improve detection performance.

3. METHODOLOGY
In this section, we describe how we created a database

of commits that introduced known vulnerabilities in open-
source projects and which features we extracted from the
commits. We will share this database with the research
community as a baseline to enable a scientific comparison



between competing approaches. We focus on 66 C and
C++ projects using the version control system Git (see ap-
pendix A for the list). These 66 projects contain 170,860
commits and 718 vulnerabilities reported by CVEs.

3.1 Vulnerability-contributing Commits
In order to analyze the common features of commits that

introduce vulnerabilities, we first needed to find out which
commits actually introduced vulnerabilities. To the best
of our knowledge, no large-scale database exists that maps
vulnerabilities as reported by CVEs to commits. Meneely
et al. and Shin et al. [25, 23, 24] manually created such
mappings for the Mozilla Firefox Browser, Apache HTTP
server and parts of the RHEL Linux kernel. We contacted
the authors to inquire whether they would share this data,
since we could have used that as a baseline for our larger
analysis. Unfortunately, this was not possible at the time,
although the data might be released in the future. To create
a freely available database for ourselves and the research
community, we set out to create a method to automatically
map CVEs to vulnerability-contributing commits.1

Since at this point we are only interested in CVEs relating
to projects hosted on Github, we utilized two data sources
as starting points for our mapping. As a first source, we
selected all CVEs containing a link to a commit of one of the
66 projects fixing a vulnerability as part of the “proof”. As a
second source for fixing commits, we created a crawler that
searches commit messages of the 66 projects for mentions of
CVE IDs. To check the accuracy of our mapping we took a
random sample of 10 % and manually checked the mapping
and found no incorrectly mapped CVEs. This gave us a
list of 718 CVEs. This list is potentially not complete since
there might be CVEs that do not link to the fixing commit
and which are also not mentioned in the commit messages.
However, this does not represent a problem for our approach
since 718 is a large enough sample to train our classifier.

We then developed and tested a heuristic to proceed from
these fixing commits to the vulnerability-contributing com-
mits (VCCs). Recall that we are operating on Git commits,
which means that we have access to the whole history of a
given project. One (appropriately named) Git subcommand
is git blame, which, given a file, for each line names the
commit that last changed the line. The heuristic for finding
the commit that introduced a vulnerability given a commit
that fixed it is as follows:

1. Ignore changes in documentation such as release notes
or change logs.

2. For each deletion, blame the line that was deleted.

Rationale: If the fix needed to change the line, that
often means that it was part of the vulnerability. Note
that Git diffs only know of added and deleted lines. If
a line was changed, it shows up as a deletion and an
addition in the diff.

1We have anonymously uploaded the database
to https://www.dropbox.com/s/x1shbyw0nmd2x45/
vcc-database.dump?dl=0 so the reviewers can access
the raw data during the review process. We will release the
data to the community together with the paper. The file
was created using pg_dump and can be read into a database
using pg_restore. The dump file will create the three
tables cves, commits and repositories in the schema export.

3. For every continuous block of code inserted in the fix-
ing commit, blame the lines before and after the block

Rationale: Security fixes are often done by adding ex-
tra checks, often right before an access or after a func-
tion call.

4. Finally, mark the commit vulnerable that was blamed
most in the steps above. If two commits were blamed
for the same amount of lines, blame both.

Our heuristic maps the 718 CVEs of our dataset to 640
VCCs. The reason we have fewer VCCs than CVEs is that
a single commit can induce multiple CVEs. To estimate the
accuracy of our heuristic, we took a 15 % random sample
of all VCCs flagged by our heuristic (i.e. 96 VCCs) and
manually checked them. We found only three cases (i.e.
3.1 %) where our heuristic blamed a wrong commit for the
vulnerability. All three of the mis-mappings occurred in
very large commits. For example, one commit of libtiff2

that fixes CVE-2010-1411 also upgrades libtool to version
2.2.8. The method we propose for VCCFinder is capable of
dealing with noisy datasets, so for the purpose of this work,
an error rate of 3.1 % is acceptable. However, improving our
blame heuristics further is an interesting avenue for future
research.

Apart from the 640 VCCs, we have a large set of 169,502
unclassified commits. We name these commits unclassified,
since, while no CVE points to them, they might still contain
unknown vulnerabilities.

At this point we now have a large dataset mapping CVEs
to vulnerability-contributing commits. Our goal now is to
extract features from these VCCs in order to detect further
potential VCCs in the large number of unclassified commits.

3.2 Features
First we extracted a list of characteristics that we hypoth-

esized could distinguish commits. One of our central hy-
potheses is that combining code metrics with GitHub meta-
data features is beneficial for finding VCCs. First, we test
each feature separately using statistical analysis, e.g. for
each feature we measured whether the distribution of this
feature within the class of vulnerable commits was statisti-
cally different from the distribution within all unclassified
commits.

Here is a list of hypotheses concerning metadata we started
with:

• New committers are more likely to introduce security
bugs than frequent contributors.

• It is good to “commit early and often” according to
the Git Best Practices3. Therefore, longer commits
may be more suspicious than shorter ones.

• Code that has been iterated over frequently, possibly
by many different authors, is more suspicious than
code that doesn’t change often. Meneely and Williams
[23] already analyzed these code churn features in their
work. We integrate and combine these features below.

Table 1 shows a list of all features along with a statistical
evaluation (cf. Section 3.4) of all numerical features except

2https://GitHub.com/vadz/libtiff/commit/31040a39
3http://sethrobertson.GitHub.io/GitBestPractices/
#commit

https://www.dropbox.com/s/x1shbyw0nmd2x45/vcc-database.dump?dl=0
https://www.dropbox.com/s/x1shbyw0nmd2x45/vcc-database.dump?dl=0
http://sethrobertson.GitHub.io/GitBestPractices/#commit
http://sethrobertson.GitHub.io/GitBestPractices/#commit


mean mean
Feature Scope VCCs others U effect size

Number of commits Repository 282 171.39 103 980.95 32143126* 40 %
Number of unique contributors Repository 524.99 236.90 30528184* 43 %

Contributions in project Author 5 % 15 % 31263040* 42 %

Additions Commit 306.19 71.54 20215148* 62 %
Deletions Commit 73.93 37.46 42983290* 20 %
Past changes Commit 627.17 385.53 40715632* 24 %
Future changes Commit 792.46 396.63 36261346* 33 %
Past different authors Commit 40.16 22.70 40292116* 25 %
Future different authors Commit 136.58 51.44 29534644* 45 %
Hunk count Commit 17.68 9.88 32348343* 40 %
Commit message 1 Commit — — — —
Commit patch 1 Commit — — — —
Keywords 2 Commit — — — —

Added functions Function 6.51 1.03 28724694* 46 %
Deleted functions Function 1.07 0.49 50084674* 7 %
Modified functions Function 6.79 3.59 41446509* 23 %

1 These features are text-based and thus not considered in the statistical analysis.
2 See Table 2 for a statisical analyis of each keyword.

Table 1: Overview of the features and results of the statistical analysis of the numeric
features. Mann–Whitney U test significant (*) if p < 0.00059.

for project-scoped features. In the following, we discuss the
features. For brevity reasons, we omit the discussion of self-
explaining features here.All our analyses are based on com-
mits. A commit can contain changes to one or more files.
The metrics about files and functions are aggregated in the
corresponding commit.

Features scoped by project are obviously the same for ev-
ery commit in that project. However, in combination with
other commit-based features, these can still become relevant.

3.2.1 Features Scoped by Project

Programming language The primary language the pro-
ject is written in, as determined by GitHub through
their open-source linguist library. In our analysis, we
focused on projects written in either C or C++. The
main reason for limiting our focus to one language was
that we wanted to ensure comparability between the
features extracted from the commit patches. When
mixing different languages and syntaxes, this can’t be
ensured. We chose C and C++ specifically since many
security-relevant projects (Linux, Kerberos, OpenSSL,
etc.) are written in these languages.

Star count (number) The number of stars the project
has received on GitHub. Stars are a user’s way of keep-
ing track of interesting projects, as starred projects
show up on the own profile page.

Fork count (number) To fork a project on GitHub means
copying the repository under your personal namespace.
This is often the first step to contributing back to the
project by then making changes under the personal
namespace and sending a pull request to the official
repository.

Number of commits (number) We counted the number
of commits that are reachable from the main branches

HEAD. The canonical main branch is “master”, but
some projects like bestpractical/rt use “stable” as the
default branch. In those cases we used the branch set
at GitHub by the maintainer of the project.

3.2.2 Features Scoped by Author

Contributions (percentage) How many commits the au-
thor has made in this project in percent, i.e. the num-
ber of commits authored divided by the number of to-
tal commits.

3.2.3 Features Scoped by Commit

Number of Hunks (number) As a hunk is a continuous
block of changes in a diff, this number assesses how
fragmented the commit is (i.e. lots of changes all over
the project versus one big change in one file or func-
tion).

Patch (text) All changes made by the commit as text rep-
resented as a bag of words.

Patch keywords (number) For each patch, we counted
the number of occurrences of each C/C++ keyword.
See Table 2 for a statistical analysis of the different
distributions of each keyword.

3.2.4 Features Scoped by File

Future changes (number) If the commit at hand is not
the most current one, this is the number of times the
file will be changed by later commits. We only use
this feature for our historical analysis and not for the
classifier, since this feature is naturally not available
for new commits.



mean mean effect
Keyword VCCs others U size

if 39.00 7.82 37013390* 70 %
int 31.30 7.02 39930128* 68 %
struct 32.38 3.66 39729656* 68 %
return 18.76 3.60 41342834* 67 %
static 15.17 3.58 45382955* 64 %
void 12.52 4.31 63935365* 49 %
unsigned 8.66 1.51 64440969* 48 %
goto 5.92 0.43 64798818* 48 %
sizeof 4.37 0.78 66764357* 46 %
break 5.56 0.84 74389604* 40 %
char 6.71 2.68 93400907* 25 %

Table 2: Statistical analysis of C/C++ keywords
sorted by effect size [33], Mann–Whitney U test sig-
nificant (*) if p < 0.000357.

3.3 Excluded Features
As can be seen in Table 1, the vast majority of the fea-

tures depend only on data gathered from the version control
system and not from additional information on GitHub or
any other platform. In fact, we left out some features that
were only available on some projects or for few commits since
the data was too sparse to reveal anything reliable. We will
briefly discuss why we excluded some features which might
seem counter-intuitive.

One feature that would be promising but which we did
not include was issue tracker information. GitHub provides
an issue tracker and even links texts like “fixes #123” in the
commit message to the corresponding issue. However, the
projects which use this feature tend to be smaller projects,
while the older and larger projects for which we have a rich
set of CVE data predominantly use an external issue tracker.
Thus, this feature is not useful for us at this time.

Another piece of information that is interesting – but un-
fortunately too sparse at the moment – is the content of the
discussion surrounding the inclusion of a change into the
main repository. For this information, features could be the
length of the discussion, the number of people involved, or
the mean experience (in terms of contributions) of the people
involved. Projects that use GitHub’s functionalities exten-
sively often do this through “pull requests”. A contributor
submits a commit to his own, unofficial repository and sub-
sequently notifies the maintainer of the official repository to
pull in the changes he made. GitHub provides good support
for this work flow, including the ability to make comments
on a pending pull request. Although this data could be use-
ful for the classification of commits, at this point, too few
projects use this work flow to be useful.

3.4 Statistical Analysis of Features
For each numerical feature, we wanted to assess its fit-

ness with respect to distinguishing VCCs from unclassified
commits. We used the Mann–Whitney U test4 in order to
compare the distribution of a given feature within the set
of commits with vulnerabilities against the set of all unclas-
sified commits. The null hypothesis states that the feature
is distributed independently from whether the commit con-

4The Mann–Whitney U test is used to test whether a value
is distributed differently between two populations.

tained a bug or not. If we can reject the null hypothesis,
the feature is distributed differently in each set and thus
is a promising candidate as input for the machine-learning
algorithms.

We used the Bonferroni correction to correct for multi-
ple testing for the 17 features we tested. Therefore, we test
against the stricter significance level of 0.00059, which corre-
sponds to a non-corrected p ≤ 0.01 for each individual test.
The date and time features (project age and commit with
time zone) were converted to numerical features based on
seconds that have elapsed since January 1, 1970 UTC (Unix
epoch).

3.4.1 Features Scoped by Project
These features were attributed to the commit depending

on the project the commit was taken from. Since all commits
from a repository, whether containing vulnerabilities or not,
have the same features, these features are too broad to ac-
tually distinguish commits. However, they can be valuable
in combination with other features later on. For brevity, we
do not discuss the features on their own here, though the
table shows the significance testing.

3.4.2 Patch Keyword Features
For each commit we counted the occurrences of each of the

following 28 C/C++ keywords: bool, char, const, extern,
false, float, for, if, int, long, namespace, new, opera-
tor, private, protected, sizeof, static, static, struct,
switch, template, throw, typedef, typename, union, un-

signed, virtual, and volatile. We then used the Mann–
Whitney U test to find out whether the given keyword is
used more or less frequently in VCCs compared to unclassi-
fied commits. Table 2 shows a subset of those keywords with
high significance and high effect. We say that an effect is
significant if p < 0.000357, corresponding to 0.01/28, again
accounting for a Bonferroni correction for multiple testing
for the 28 keywords.

The effect size measures the percentage of pairs that sup-
port the hypothesis. For example, for the keyword if, the
vulnerable commits contain more ifs than the unclassified
commits in 70 % of the cases. As can be seen by looking at
the mean values for each distribution, if there is a statistical
effect, the VCCs are more likely to contain those keywords
compared to unclassified commits.

3.4.3 Features Scoped by Commit or File
All remaining features except for the number of deleted

lines are distributed differently over VCC versus unclassified
commits, with p = 3.9× 10−6 the number of hunks being the
least significant result. We note that the fact that a feature
is distributed differently does not mean that this feature
can be used to distinguish between the two sets. However,
these results provide some hint as to why a machine-learning
approach that uses a combination of these features can be
successful.

The only feature where the difference was not significant
was the number of deleted lines (p = 4.6× 10−4), contrary
to the number of added lines (p = 3.9× 10−37), for which
there is a significant difference in the distribution. When
we manually looked at commits with known vulnerabilities
and compared them to unclassified commits, we saw that
the former often added a great deal of code, whereas the
number of deleted or edited lines were the same as for un-



classified commits. This finding confirms the intuition that
security bugs are not commonly introduced by code edits or
refactoring, but that new code is a more likely entry points
for vulnerabilities. To the best of our knowledge this fact
has not been used to ease the workload of code reviewers.

3.4.4 Text-Based Features
One of the central tenets of our work is that combining

code metrics with GitHub metadata can help with the de-
tection of VCCs. While both the code and the metadata
features detailed above are “hard” numerical features, there
are also a number “soft” features contained in GitHub that
can be helpful. These text-based features, like the commit
message, cannot be evaluated using statistical tests as above,
but will be integrated into the machine-learning algorithm
using a generalized bag-of-words model as we will discuss in
Section 4.1.

4. LEARNING-BASED DETECTION
The different features presented in the previous sections

provide information for analyzing the search for suspicious
commits and the discovery of potential vulnerabilities. As
the large number of these features renders the manual con-
struction of detection rules difficult, we apply techniques
from the area of machine-learning to automatically analyze
the commits and rank them so code-reviewers can prioritise
their work. The construction of a learning-based classifier,
however, poses several challenges that need to be addressed
to make our approach useful in practice:

1. Generality: Our features comprise information that
range from numerical code metrics to structured meta-
data, such as words in commit messages and keywords
in code. Consequently, we strive for a classifier that is
capable of jointly analyzing these heterogeneous fea-
tures and inferring a combined detection model.

2. Scalability: To analyze large code repositories with
thousands of source files and commits, we require a
very efficient learning method which is able to operate
on the large amount of available features in reasonable
time.

3. Explainability: To help an analyst in practice, it is ben-
eficial if the classifier can give a human-comprehensible
explanation as to why the commit was flagged, instead
of requiring an analyst to blindly trust a black-box de-
cision.

We address these challenges by combining two concepts
from the domains of machine-learning and information re-
trieval. In particular, we first create a joint representation
for the heterogeneous features using a generalized bag-of-
words model and then apply a linear Support Vector Ma-
chine (SVM)—a learning method that can be extended to
provide explanations for its decisions and which is also effi-
cient enough to cope with the large number of features which
need to be analysed.

4.1 Generalized Bag-of-Words Models
Bag-of-word models have been initially designed for anal-

ysis of text documents [30, 29]. In order to combine both
code metric based numerical features with GitHub meta-
data features, we generalize these models by considering a

generic set of tokens S for our analysis. This set can contain
textual words from commit messages as well as keywords,
identifiers and other tokens from the code of a commit. In
particular, we obtain these tokens by splitting the commit
message and its code using spaces and newlines. Further-
more, we ignore certain tokens, such as author names and
email addresses, since they might bias the generality of our
classifier and could compromise privacy.

Formally, we define the mapping ϕ from a commit to a
vector space as

ϕ : X −→ R|S|, ϕ : x 7−→
(
b(x, s)

)
s∈S ,

where X is the set of all commits and x ∈ X an individual
commit to be embedded in the vector space. The auxiliary
function b(x, s) returns a binary flag for the presence of a
token s in x and is given by

b(x, s) =

{
1 if token s is contained in x

0 otherwise.

To also incorporate numerical features like the author con-
tribution into this model, we additionally convert all nu-
merical features into strings. This enables us to add all
arbitrary numbers to S and thereby treat both kinds of fea-
tures equally. However, when using a string representation
for numerical features we have to ensure that similar values
are still identified as being similar. This is obviously not
the case for a naive mapping, as “1.01” and “0.99” represent
totally different strings.

We tackle this problem by mapping all numerical features
to a discrete grid of bins prior to the vector space embed-
ding. This quantization ensures that similar values fall into
the same bins. We choose different bin sizes depending on
the type of the feature. If the numerical values are rather
evenly distributed, we apply a uniform grid, whereas for
features with skewed distribution we a apply a logarithmic
partitioning. For the latter, we apply the logarithmic func-
tion to its values and cut off all digits after the first decimal
place.

To better understand this generalized bag-of-words model,
let us consider a fictitious commit x, where a patch has been
written by a user who did not contribute to a project before.
The committed patch is written in C and contains a call
to an API function which is associated with a buffer write
operation. The corresponding vector representation of the
commit x looks as follows

ϕ(x) 7→



· · ·
1
0
· · ·
1
0
· · ·



· · ·
AUTHOR_CONTRIBUTION:0.0

AUTHOR_CONTRIBUTION:10.0

· · ·
buf_write_func();

some_other_func();

· · ·

The two tokens indicative of the commit are reflected by
non-zero dimensions, while all unrelated tokens are associ-
ated with zero dimensions. Note that the resulting vector
space is high-dimensional and may contain several thousands
of dimensions. For a concrete commit x, however, the vast
majority of these dimensions are zero and thus the vector
ϕ(x) can be stored in a sparse data structure. We make use
of the open-source tool Sally [27] for this purpose, which
implements different strategies for extracting and storing
sparse feature vectors.



4.2 Classification and Explainability
While in principle a wide range of methods are available

for learning a classifier for the detection of vulnerability
contributing commits, only few methods scale with larger
amount of data while also providing explanations for their
decisions. One technique satisfying both properties are lin-
ear Support Vector Machines (SVM). This variant of classic
SVMs does not apply the kernel trick for learning, but in-
stead directly operates in the input space. As a result, the
run-time complexity of a linear SVM scales linearly in the
number of vectors and features.

We implement our classifier for commits using the open-
source tool LibLinear [17] that provides different optimiza-
tion algorithms for linear SVMs. Each of these algorithms
seeks a hyperplane w that separates two given classes with
maximum margin, in our case corresponding to unclassi-
fied commits and vulnerability-contributing commits. As
the learning is performed in the input space, we can use
this hyperplane vector w for explaining the decisions of our
classifier.

By calculating the inner product between ϕ(x) and the
vector w, we obtain a score which describes the distance from
ϕ(x) to the hyperplane; that is, how likely the commit intro-
duces a vulnerability, f(x) = 〈ϕ(x), w〉 =

∑
s∈S ws b(x, s).

As this inner product is computed using a summation over
each feature, we can simply test which features provide the
biggest contribution to this distance and thus are causal for
the decision.

Finally, to calibrate free parameters of the linear SVM,
namely the regularization parameter C and the class weight
W , we perform a standard cross-validation on the training
data. We then pick the best values corresponding to a reg-
ularization cost C = 1 and a weight W = 100 for the class
of suspicious commits.

5. EVALUATION
We evaluate the effectiveness of our approach in several

different ways. First, we use a temporal split between the
training and test data to evaluate the predictiveness of the
SVM. We picked 2011 as the split data to have the rela-
tion of two-thirds to one-thirds training vs test data.5 Since
we have the ground truth for the years 2011 to 2014 this
method is the allows us to realistically and reliably test the
effectiveness of VCCFinder.

Dataset

Historical Test Total

CVEs 469 249 718
VCCs 421 219 640
Unclassified commits 90,282 79,220 169,502

Table 3: Distribution of commits, CVEs, and VCCs.

5This is a standard approach to evaluate classifiers. The
first dataset contains all commit data up until the 31st of
December 2010. We use this dataset for the design and
training of our classifier. The dataset can be considered the
‘historical’ dataset. The second ‘testing’ dataset contains
all commit data from 2011 to 2014 which is then used to
evaluate our approach. This simulates VCCFinder being
used in the beginning of 2011 having being trained on all
existing data at the time and then trying to predict the
unkown VCCs of the future (2011 to 2014).
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(a) Detection performance of VC-
CFinder using different feature sets.
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Figure 1: Detection performance of VCCFinder.

Second, we discuss the features learnt by the SVM as well
as the true positives, i.e. vulnerabilities our classifier found
in the test set. Third, we discuss the commits that are
flagged by our classifier but lie outside the ground truth
we have based on the CVEs. These could either be false
positives or point to previously undetected vulnerabilities.
Finally, we compare our approach to Flawfinder, an open-
source static code analyzer.

Comparing feature sets.
We start with an evaluation of the impact of different

feature sets and their combination on the detection perfor-
mance of our classifier. Figure 1(a) shows the precision-
recall curves for these experiments. To this end, we train
a classifier on code metric features and meta-information.
As can be seen, the classifier that combines all the features
(shown in blue) out-performs the classifiers which only oper-
ate on a sub-set of the features, showing that combining the
different features is beneficial. Figure 1(b) shows the preci-
sion recall curve of our VCCFinder compared to Flawfinder,
which only operates on code metrics. The comparison with
Flawfinder will be discussed in greater depth in section 5.3.



5.1 Case Study
The previous section shows the precision of our approach

for the different levels of recall. In practice, developers can
simply decide how many commits they can afford (time-
and cost-wise) to review and VCCFinder will improve their
chances of finding vulnerabilities. For the sake of comparison
with Flawfinder, we now set VCCFinder’s recall to the same
as that of Flawfinder (i.e. 0.24 cf. Table 4) and discuss
some examples of the VCCs which would have been flagged
by VCCFinder if it had been run from 2011 to 20146. In
these four years, VCCFinder would only have flagged 89
out of 79688 commits for manual review compared to 5,513
commits flagged by Flawfinder. We believe this is a very
manageable amount of code reviews to ask reviewers to do
for a high return. Additionally, projects can increase the
number of commits to review at any time. In the following,
we present an excerpt of the vulnerabilities that VCCFinder
found, when set at the very conservative level of Flawfinder’s
recall. We also discuss which features our classifier used to
spot the VCCs.

CVE-2012-2119.
Commit 97bc3633be includes a buffer overflow in the mac-

vtap device driver in the Linux kernel before 3.4.5, when run-
ning in certain configurations, allows privileged KVM guest
users to cause a denial of service (crash) via a long descrip-
tor with a long vector length7. Considering metadata, our
SVM detects this commit because of the edited file’s high
code churn, and because the author made few contributions
to the Kernel in combination with the fact the the developer
used sockets.

CVE-2013-0862.
FFmpeg commit 69254f4628 introduces multiple integer

overflows in the process frame obj function in libavcodec /
sanm.c in FFmpeg before 1.1.2 that allow remote attackers
to have an unspecified impact via crafted image dimensions
in LucasArts Smush video data, which triggers an out-of-
bounds array access8. The SVM detected that the author
contributed little to the project before as well as that the
commit inserted a large chunk of code at once.

CVE-2014-1438.
In commit 1361b83a13, the restore fpu checking function

in arch/x86/include/asm/fpu-internal.h in the Linux ker-
nel before 3.12.8 on the AMD K7 and K8 platforms does
not clear pending exceptions before proceeding to an EMMS
instruction, which allows local users to cause a denial of
service (task kill) or possibly gain privileges via a crafted
application.9 The SVM detected a high amount of excep-
tions, a high number of changed code, inline ASM code, and
variables containing user input such as __input and user.

6As previously mentioned we use the years 2011–2014 as the
test dataset, since we have ground truth data on which to
base the discussion.
7http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2012-2119
8http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2013-0862
9https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2014-1438

CVE-2014-0148.
In commit e8d4e5ffdb of Qemu the block driver for Hyper-

V VHDX Images is vulnerable to infinite loops and other po-
tential issues when calculating BAT entries. This is due to
missing bounds checks for block size and logical sector size
variables10. The SVM found that the patch of the VCC
included many keywords indicating errorprone byte manip-
ulation, such as “opaque”, “*bs”, or “bytes”.

5.2 Flagged Unclassified Commits
While we discussed the known true positive hits of our

classifier for the years 2011 to 2014 above, we also have
36 commits that were flagged as potentially dangerous, for
which we have no known CVE. These are commits that need
be checked by code reviewers. We have shared our results
with several code reviewing teams and will follow responsible
disclosure in all cases, so we cannot discuss the flagged com-
mits at this time. However, we can already talk about one
vulnerability found by VCCFinder in commit d08d7142fd

of the FFmpeg project, since this vulnerability was fixed in
commit cca1a42653 before it ever was released. Thus, dis-
cussing the findings poses no harm to the FFmpeg project.

Commit d08d7142fd of FFmpeg introduces a new codec
for Sierra Online audio files and Apple QuickDraw and was
flagged in the 101 commits, but is not associated with a
CVE. However, we discovered that in the newly created file
libavcodec/qdrw.c, starting at line 72, the author does not
check the size of an integer read from an adversary-supplied
buffer.

for ( i = 0 ; i <= c o l o r s ; i++) {
int idx ;
idx = BE 16 ( buf ) ; /∗ c o l o r index ∗/
buf += 2 ;

a−>p a l e t t e [ idx ∗ 3 + 0 ] = ∗buf++;
buf++;
a−>p a l e t t e [ idx ∗ 3 + 1 ] = ∗buf++;
buf++;
a−>p a l e t t e [ idx ∗ 3 + 2 ] = ∗buf++;
buf++;

}

The macro BE_16() reads two bytes from the argument
and returns an unsigned 16 bit integer. This means that an
adversary controlling buf (e.g. through a malicious video)
could address 3 · 65535 bytes of memory which will be filled
by data from buf itself.

The SVM classified the commit because of raw byte ma-
nipulation, indicated by uses of “buf” as well as an inexpe-
rienced committer pushing a large chunk of code at once.

5.3 Comparison to Flawfinder
We compare our findings against Flawfinder [34] version

1.31, a static source code scanner. Flawfinder is a mature
open-source tool that has been under active development
since 2001 and fulfills the requirements of being able to pro-
cess C and C++ code on the level of commits. When given
a source file, Flawfinder returns lines with suspected vul-
nerabilities. It offers a short explanation of the finding as
well as a link to the Common Weakness Enumeration (CVE)
database.11 For the comparison, we run Flawfinder on each

10https://bugzilla.redhat.com/show_bug.cgi?id=
1078212

11http://cwe.mitre.org/
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https://bugzilla.redhat.com/show_bug.cgi?id=1078212
https://bugzilla.redhat.com/show_bug.cgi?id=1078212
http://cwe.mitre.org/


added or modified file of a commit. We then record the
lines which Flawfinder flags that were inserted by the com-
mit. Consequently, we say that Flawfinder marked a commit
if it found a flaw in one of the lines the commit inserted.

We then evaluated both our tool and Flawfinder against
the test dataset. Table 4 shows the contingency table, pre-
cision and recall for both tools. We argue that precision is
the most important metric in this table and the one which
should be used to compare Flawfinder and VCCFinder, as
this value determines how many code locations a security
researcher needs to look at in order to find a vulnerabil-
ity. While a higher recall would theoretically mean that
more vulnerabilities can be found, in practice they would be
buried in a large amount of false positives. So for now, we
accept that we will not find all vulnerabilities but create an
environment in which it is realistic for a reviewer to check all
flagged commits and achieve a decent success rate. Each row
compares VCCFinder to Flawfinder with a different configu-
ration. In the first row, we set VCCFinder’s recall to that of
Flawfinder’s. As can be seen, VCCFinder’s precision is sig-
nificantly higher. Our approach improves the false positive
rate by over 99 %! This is the most realistic configuration,
since this configuration can be used in a real world setting.
For the next comparison, we set VCCFinder’s false posi-
tives to the same number as Flawfinder’s. While of course
the number of false positives is then prohibitively high, VC-
CFinder does find almost three times as many VCCs as
Flawfinder. In the final comparison, we set VCCFinder’s
precision to Flawfinder’s very poor value. While the num-
ber of false positives is prohibitively high, VCCFinder finds
almost 90% of all VCCs compared to Flawfinder’s 24%.

In Table 5 we also compare VCCFinder and Flawfinder
based on their top results. In the first row, we select the top
100 flagged commits, then 500 and finally 1000. Among the
top 100 commits, VCCFinder identifies 56 VCCs correctly,
significantly reducing the amount of commits a security re-
searcher would need to review before finding a commit con-
taining a vulnerability. Compared to FlawFinder, its preci-
sion is more than 50 times higher and it already identifies
more than 25% of all VCCs in the data set at this point.

VCCFinder significantly outperforms Flawfinder in all pa-
rameter configurations. Importantly, we were able to reduce
the number of false positives to the point where it becomes
realistic for reviewers to carefully check all flagged commits.
This represents a significant improvement over the current
state-of-the-art.

We would have liked to compare our approach to more
alternatives; however, since most research papers have not
published the datasets they worked on and since their tools
are not applicable to commits at the scale at which we tested
VCCFinder, this was not possible. We are releasing our
VCC database and results to the community, so that fu-
ture researchers have a benchmark against which different
approaches can be compared.

6. TAKE-AWAYS
As the results above show, the performance of VCCFinder

means that it can realistically be used in production en-
vironments without overburdening developers with a huge
number of reviews. Since it can work on code snippets it
can used automatically when new commits come in without
requiring a complex test environment.
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Flawfinder
Top 100 1 99 218 79121 0.01 0.00
Top 500 6 494 213 78726 0.01 0.03
Top 1000 13 987 206 78233 0.01 0.06

VCCFinder
Top 100 56 44 163 79176 0.56 0.26
Top 500 88 412 131 78808 0.18 0.40
Top 1000 105 895 114 78325 0.11 0.48

Table 5: Confusion matrix of the tools by top X
commits. T: True, F: False, P: Positive, N: Negative.

Apart from this, we would like to present some qualitative
take-aways we found while developing and evaluating VC-
CFinder, which can be useful even without using the tool.
While some of these take-aways confirm well-known beliefs,
we found it interesting to see that our machine-learning ap-
proach also came to these conclusions and backed them up
with quantitative data, but also generated new insights.

Error handling is hard.
When looking at the features the SVM learnt by classify-

ing VCCs, we saw that the adage“gotos considered harmful”
[16] still holds true today, as amongst others the keyword
goto and the according jump labels such as out: and er-

ror: increase the likelihood of vulnerable code. We can
confirm this by looking at Table 2. However, we found that
the SVM also flags returning error values such as -EINVAL

as potentially dangerous. Combined with gotos, these are
common C mechanisms for error and exception handling. So
unlike Dijkstra’s argument that gotos are harmful because
they lead to unreadable code, in our context gotos are con-
sidered harmful because they frequently occur in an error-
handling context. So instead of merely detecting gotos, our
SVM gives exception and error-handling code a higher po-
tential vulnerability ranking. Our explanation of this effect
is as follows: because it is easy to miss some cases, exception
handling is easy to get wrong (e.g. Apple’s goto fail bug in
their TLS implementation12).

Variable Usage and Memory Management.
When examining highly ranked features of the SVM, we

noticed that some memory management constructs lead to a
higher vulnerability ranking. For instance, sizeof(struct,
a high usage of sizeof in general, len and length as vari-
able names occurred more often in vulnerable commits. In
addition, we observed that variable names consisting of spe-
cific strings often occurred in VCCs: buf, net, socket and
sk. While the presented keywords and variables alone do
not lead to vulnerabilities, they may indicate more critical
areas of the code.

12https://www.imperialviolet.org/2014/02/22/
applebug.html
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True False False True
positive positive negative negative Precision Recall

Flawfinder 53 5,460 166 73760 0.01 0.24

VCCFinder
– with same recall/true positives 53 36 166 79184 0.60 0.24
– with same number of false positives 144 5460 75 73760 0.03 0.66
– with same precision 185 24288 34 54932 0.01 0.84

Table 4: Comparison of the tools

Help new contributors.
We found that new contributors, i.e. contributors with

less than 1 % of all commits in a given project, are about
five times as likely to commit a vulnerability as their coun-
terparts who frequently contribute. While new contributors
authored 470 of 95,621 VCCs, or 0.49 %, frequent contrib-
utors authored only 244 of 255,074 VCCs, or 0.10 % (Pear-
son’s χ2: p < 0.0001). While this is of course also no big
surprise, we hope quantifying this risk will help convince
projects to introduce more stringent review policies.

Final Thoughts.
As both the evaluation and the take-aways show, commits

have a myriad of possible reasons for being flagged as VCCs.
These reasons can be code-based or metadata-based or, im-
portantly, a combination of the two. The examples above
give us an intuitive understanding of why this is. While
our main recommendation is to use VCCFinder to classify
potentially vulnerable commits to prioritize reviews, there
also general recommendation which can be extracted from
the classifier results.

7. LIMITATIONS
Our approach has several limitations. We selected 66

open-source projects written in C or C++ that created at
least one CVE but otherwise varied in numbers of contribu-
tors, commits, or governance. We believe that applying our
results to other projects using C or C++ should not threaten
the validity. However, we can make no predictions on how
VCCFinder performs on projects which to date have not re-
ceived any CVEs. For generalization to other programming
languages, the feature extraction and training will need to
be re-done per language, so that the SVM does not mis-train
based on differences in syntax.

We used a heuristic to map CVEs to VCCs. Our manual
analysis of 15 % of these mappings showed that we have an
error rate of 3.1 %. This needs to be taken into account by
any project building on this dataset.

While we were able to map CVEs to VCCs, it is of course
unknown how many unknown vulnerabilities are contained
in our annotated database. Thus, our true positives must be
considered a lower bound and the false positives an upper
bound. So both VCCFinder’s and Flawfinder’s results might
be better than reported and the relation between them could
change. However, since VCCFinder outperforms Flawfinder
by a large margin, it seems unlikely that the outcome would
change.

Our experiments demonstrate that VCCFinder is able to
automatically spot vulnerability-contributing commits with
high precision; yet this alone does not ensure that an under-

lying vulnerability will be uncovered. Significant work and
expertise is still necessary to audit commits for potential
security flaws. However, our approach reduces the amount
of code to inspect considerably and thus helps increase the
effectiveness of code audits.

8. CONCLUSION
In this paper, we present and evaluate VCCFinder, an

approach to improve code audits. Our approach combines
code-metric analysis with meta data gathered from code
repositories using machine-learning techniques. Our results
show that our approach significantly outperforms the vulner-
ability finder Flawfinder. We created a large test database
containing 66 C and C++ project with 170,860 commits on
which to evaluate and compare our approach. Training our
classifier on data up until 2010 and testing it against data
from 2011 to 2014, VCCFinder produced 99% fewer false
positives than Flawfinder, detecting 53 of the 219 known
vulnerabilities and only producing 36 false positives com-
pared to Flawfinder’s 5,460 false positives.

To enable future research in this area, we will release
our annotated VCC database and results so that future ap-
proaches can use this database both as a training set and as
a benchmark to compare themselves to existing approaches.
The community is currently lacking such a baseline and we
hope to spur more comparable research in this domain.

We see a very large amount of interesting future work.
While the results are already significantly better than the
Flawfinder tool, we believe that we have only begun to
scratch the surface of what can be ascertained by combin-
ing the different features. Further analyzing the results of
the classifier will likely allow us to make more general rec-
ommendations on how to minimize the likelihood that vul-
nerabilities make it from the initial vulnerable commit into
deployed software.
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APPENDIX
A. LIST OF REPOSITORIES
We used the following list of repositories: Portspoof,
GnuPG, Kerberos, PHP, MapServer, HHVM, Mozilla
Gecko, Quagga, libav, Libreswan, Redland Raptor RDF
syntax library, charybdis, Jabberd2, ClusterLabs
pacemaker, bdwgc, pango, qemu, glibc, OpenVPN, torque,
curl, jansson, PostgreSQL, corosync, tinc, FFmpeg,
nedmalloc, mosh, trojita, inspircd, nspluginwrapper,
cherokee webserver, openssl, libfep, quassel, polarssl,
radvd, tntnet, Android Platform Bionic, uzbl, LibRaw,
znc, nbd, Pidgin, V8, SpiderLabs ModSecurity, file,
graphviz, Linux Kernel, libtiff, ZRTPCPP, taglib, suhosin,
Phusion passenger, monkey, memcached, lxc, libguestfs,
libarchive, Beanstalkd, Flac, libX11, Xen, libvirt,
Wireshark, and Apache HTTPD.
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